
Unclassified

Test & Evaluation/Science & Technology Program

NATO S&T Meeting

Autonomous & Artificial Intelligence
Test (AAIT)

Technology Area
Executing Agent:

Vernon Panei
vernon.panei@navy.mil

Chief Engineer/Presenter:
Jonathan Elliott
jonathan.elliott@navy.mil

NAVAIR Public Release- 2018-358 'Approved for Public
Release; distribution is unlimited'.

Presenter
Presentation Notes
Intro
My name is Jonathan Elliott and I am the Chief Engineer for the Unmanned and Autonomous Systems Test Technology Area. I am hear today to give an overview of our office and discuss some of our current development efforts.

2Unclassified

Mission

Develop technologies that significantly advance the science of
testing autonomous systems

These technologies improve the safety and user trust in
autonomous system tests and operations

Autonomous Troop Transport

Autonomous Cargo Transport Autonomous Aerial Refueling

Autonomous Aerial Transport

Autonomous Undersea Survey

Autonomous Port Protection
NAVAIR Public Release- 2018-358 'Approved for Public

Release; distribution is unlimited'.

Presenter
Presentation Notes
Simple enough mission: We develop technologies to test autonomous and unmanned systems
With effective testing, we will improve safety of the systems (for test and also in the field) and instill trust in the user.

Technologies to support DoD Acquisition programs
We strive to have the technologies transition into T&E capabilities, so the autonomous systems are safe and gain the trust of the users

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=IylTsFPJ3EL-EM&tbnid=rKCyl-tZybE93M:&ved=0CAUQjRw&url=http://spread-the-truth777.blogspot.com/2012/10/drones-etasuniens-et-guerre-sous-marine.html&ei=i1fVU4a0JdPgsASEyIGQAw&bvm=bv.71778758,d.cWc&psig=AFQjCNFOT2r371nWrzF7jdgyifsfZRH-MQ&ust=1406576899885268
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=34owUDLOjiVSMM&tbnid=Rx3NnLhwFdcmJM:&ved=0CAUQjRw&url=http://www.nasa.gov/centers/dryden/status_reports/global_hawk_status_10_05_12.html&ei=dVMnUtKhBtbk4AOXkYCIDQ&bvm=bv.51495398,d.cWc&psig=AFQjCNH3VsQ1eYMIAFQ9acTVBzaoMt8RKg&ust=1378395375793540
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&uact=8&docid=pDEFroWiYWVEWM&tbnid=1L5YExjKpc0wqM:&ved=0CAUQjRw&url=http://blog.navaldrones.com/2012/11/poland-naval-unmanned-systems.html&ei=jVXVU5X7K47KsQST6oH4CQ&bvm=bv.71778758,d.cWc&psig=AFQjCNF1awPZVRHzZJn7SoDrQK4jljmgqQ&ust=1406576365612558

3Unclassified

Unmanned and Autonomous Systems
Test Operational Scenarios

Bio Monitoring

Persistent Stare

BDA

Autonomous
Refueling

Wingman

Convoy

Route
Clearance

Casualty
Evacuation

IED
Interrogation

Perimeter
Surveillance

Cordon &
Search

Autonomous
Lift

Dynamic
Networks

Swarming
Recon

Targeting

Anti-Sub
Warfare

Mine
Neutralization

Blockade
Enforcement

Collaborative
Autonomy

Port
Protection

Coastal ISR

Better Testing of Autonomous Systems leads to greater Warfighter Trust in
their mission performance

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
UAST must support autonomous systems across all domains and services. This slide shows the breadth of autonomous systems within the DOD.

To dig deeper into the domains, and really come up with detailed T&E needs, we look at the operational missions that UASs perform.
You can see the breadth and depth of UAS missions. These Use Cases map directly to current DOD projects and influence UAST development priorities.

4Unclassified

Autonomy Priorities

4

Service Priorities

• Over 150 active programs employing a
spectrum of autonomy

• Services have identified 23 programs as
high priority

GrayWolf

MQ25A

AACUS

Tactical Offboard Sensing

Sense and Avoid ART2 LCASD

Tern LOCUST

SHARC FDECO USVS

XLUUV CCS LDUUV MDUSV

HCUS

ICE-T

150+ Active Autonomy Programs

RCISLeader Follower ACO S-MET

Aito ICAS

NAVAIR Public Release- 2018-358 'Approved for Public
Release; distribution is unlimited'.

Presenter
Presentation Notes
The services have identified 23 autonomy programs currently in development. The services consider these to be top priorities. UAST is designed to support ALL autonomy testing but is required to support these identified programs.

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwi307rfqKLUAhUFeSYKHQK-BAIQjRwIBw&url=http://asc.army.mil/web/portfolio-item/cs-css-route-clearance-interrogation-system-rcis-type-i/&psig=AFQjCNFX-HrZ_PyrbN8kjH8GqyluQyaLTg&ust=1496601370223666

5Unclassified

Autonomy Testing Challenges

The testers are asking hard questions, like these:
• How do I measure human-machine interaction effectiveness?
• How do I design tests for manned-unmanned team coordination?
• How do I develop tests for evoking emergent behavior?
• How do I assess the decision process and cognition, especially with a learning system?
• How do I design tests for distributed teams and swarms interaction?
• How do I develop tests that fully exercise rule coverage?
• How do I create sufficiently smart actors for an immersive environment?
• How do I identify the most salient tests based on SUT parameters and mission?
• How do I measure adaptivity and emergence?
• How do I assess maturity of learning systems?
• Can I test it safely?
• Can I test it in budget / on time?

AAIT Wants These Questions Answered

NAVAIR Public Release- 2018-358 'Approved for Public
Release; distribution is unlimited'.

Presenter
Presentation Notes
The testing community, without having to do any detailed analysis, are already thinking about the impending problems of testing these systems.

Exploit white box methods for fault analysis
Identify failure boundaries for test selection
Measure distributed situational awareness and decision making
Develop immersive environments for complex terrain
Create tools to preload experience
Adapt test environment to multiple smart agents
Assess rule adherence and mission coverage
Correlate separate but networked awareness and decisions
Develop immersion for close maneuvering and formation
Provide embedded prediction for collision safety
Design tests for exercising software resiliency

6Unclassified

Eras and Testing Challenges

Autonomous Era…

• Verify action
• Measure physical properties

such as position, path, speed,
separation distance, completion
of event

• Verify reasoning process, not
just action

• Verify that SUT perceived
situation correctly and meant to
act the way it did

• Verify cognition
• Recognize that knowledge and

decision ability are a function of
time and experience

• Need to verify SUT had
sufficient knowledge of a
situation to form correct intent

• Need to verify combination of
multiple mission goals

Near Mid Far

• Preprogrammed commands
with explicit tasks

• Deterministic behavior
• Dependence on reliable

communications

• Explicit tasks
• Decisions made based on

environmental and contextual
conditions

• Behaviors are preprogrammed
• Structured independence,

locally aware

• Independent reasoning
• Experience driven
• Adaptive
• High decision complexity
• UAS-to-UAS cooperation
• Adversary interaction
• Unstructured independence
• Distributed understanding

Time

Automated Era… Intelligent Era…

Testers need to… Testers need to… Testers need to…

Our Focus is on Testing
AutonomySUT= System Under Test

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
A look at the different eras of autonomy and the challenges of testing each. As we advance toward more complex autonomy, the test and evaluation becomes more and more complex.

Align with Unmanned Systems Integrated Roadmap (2013-2038)

This chart shows that as we progress toward more complex autonomy, testing gets more difficult, requiring more complex testing technology.

The three eras of autonomy shown here are derived from several DoD roadmaps and strategic plans.

Using the examples of automated, autonomy, and intelligent from the previous slide, we can show how testing changes as a function of the level of autonomy
Automated: the aircraft flies to it’s goal. We only need to measure the action: instrument the vehicle and determine if it got to the endpoint.
Autonomy: the aircraft flies toward its goal but encounters an obstacle. The aircraft flies around to the left and continues to the goal. To assess this behavior, we need to consider the intent. Did it perceive the obstacle correctly and react according to the rules set by the autonomy? In this case going right or left could be considered correct.
Intelligent: The aircraft flies toward the goal but encounters multiple hostile threats. The autonomy decides to fly a path that it determines to be the least risk and eventually reaches the goal unharmed. Did the autonomy meet spec? One must consider the motivation. In this case the autonomy must have sufficient information to make a decision. If the aircraft would have been destroyed, did it still make the best decision?

From the previous slide, we showed the many functional components of an autonomous system, and many interactions with external systems, all of which need to be tested. Not only is that a tremendous amount of work, but consider this: how autonomous our system is will determine how we have to test it.

The focus of our TTA is the Autonomous Era, just edging into Intelligent Era.
This is simply to bound investment scope. There’s no urgent need to test the most sophisticated intelligent UASs just yet, we have more pressing but yet plenty complex needs in the near- and mid-term.

Boundaries between areas derived from DoD roadmaps:
Division between Automated and Autonomous expressed in the 2011 Unmanned System Integrated Roadmap (USIR)
Division between Autonomous and Intelligent expressed in the 2012 DoD Test Resource Strategic plan (Intelligent called out as AI)

7Unclassified

Autonomous Systems Overview

Test Technologies are needed to measure and assess the
INTERNAL FUNCTIONS of the autonomy

NAVAIR Public Release- 2018-358 'Approved for Public
Release; distribution is unlimited'.

Autonomy

Presenter
Presentation Notes
The inner workings of a generic autonomous system. All of the functions must be tested.
How the autonomy perceives the world also needs to be monitored and tested.
Shows just how complicated an unmanned system is

Models taken directly from roadmap.
Top is internal perspective, bottom is external perspective.

Top:
These are the internal functions of a generic UAS
The UAS interacts with its internalized perception of its world.
That world is a mix of preprogrammed information and whatever augmentation it gets from its own sensors
This diagram shows different degrees of autonomy, from the outer circle where the UAS simply senses and acts (automation: fly a point to point mission) or the second loop (autonomous: senses-perceive-behaves-acts, point-to-point mission, but has the ability to sense obstacles and reroute to end point) or the inner loop (intelligent: the autonomy is learning and reasoning as well, mission end point defined, uses knowledge of previous missions to decide best path based on history and sensor inputs)
The world model initially includes preprogrammed information: the terrain, imagery, other platforms it might encounter, its mission plan, and who the bad guys and good guys are.
That world model is continually updated by inputs from the UAS sensors (including comms from mission controller)

(we need technologies to test all of these internal functions of an autonomous system)

Bottom:
Looking outside the UAS, these are all of the entities that a UAS needs to interact with
Tester need to control the UAS, collect data, and measure its performance
Team (Blue players) need to cooperate and share data
Human (controller) needs to operate the UAS and know status
Network for data sharing
Adversaries provide sensor contact and something to shoot at 

All of these components need to be tested as well

Test internal world model, behaviors
DT/OT analogy

Note the three loops on the upper diagram representing automation, automony, and intelligence.

You can see that the sheer number of components and interactions make for complicated testing…

8Unclassified

Autonomous Systems Overview

Test Technologies are needed to measure and assess the
EXTERNAL INTERACTIONS of the autonomy

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
And the external interactions. All need to be tested.
Also the tester must interact with the UAS, and that path may not be available when the UAS arrives for test

Models taken directly from roadmap.
Top is internal perspective, bottom is external perspective.

Top:
These are the internal functions of a generic UAS
The UAS interacts with its internalized perception of its world.
That world is a mix of preprogrammed information and whatever augmentation it gets from its own sensors
This diagram shows different degrees of autonomy, from the outer circle where the UAS simply senses and acts (automation: fly a point to point mission) or the second loop (autonomous: senses-perceive-behaves-acts, point-to-point mission, but has the ability to sense obstacles and reroute to end point) or the inner loop (intelligent: the autonomy is learning and reasoning as well, mission end point defined, uses knowledge of previous missions to decide best path based on history and sensor inputs)
The world model initially includes preprogrammed information: the terrain, imagery, other platforms it might encounter, its mission plan, and who the bad guys and good guys are.
That world model is continually updated by inputs from the UAS sensors (including comms from mission controller)

(we need technologies to test all of these internal functions of an autonomous system)

Bottom:
Looking outside the UAS, these are all of the entities that a UAS needs to interact with
Tester need to control the UAS, collect data, and measure its performance
Team (Blue players) need to cooperate and share data
Human (controller) needs to operate the UAS and know status
Network for data sharing
Adversaries provide sensor contact and something to shoot at 

All of these components need to be tested as well

Test internal world model, behaviors
DT/OT analogy

Note the three loops on the upper diagram representing automation, automony, and intelligence.

You can see that the sheer number of components and interactions make for complicated testing…

9Unclassified

Autonomous Systems Overview

Evaluate Trust

Evaluate Swarm
Performance & Behavior

Agile & Adaptive
Test Ranges

Intelligent Threats

Emulate & Connect to Cloud

Evaluate Internal
Autonomy Functions in
LVC Environment

Quantify Learning Ability

Intelligent Test Planning to Bound
Performance & Test Space

Optimize Human
Machine Relationship

Common test cases, policy, metrics and methods enabling consistency/continuity/reciprocity
across DoD as well as other federal and state regulatory bodies in licensing/certification/VV&A

Common architectures, M&S environments & test tools enabling
“designed-in” test interfaces, and tester data/knowledge sharing

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Autonomy

Presenter
Presentation Notes
Starting last year, UAST commissioned a study with Georgia Tech to investigate gaps of test technologies. It produced some general classes of autonomous testing. These needs tie together the internal and external models of an autonomous system. They include: …

Here we show where the required test capabilities map to components of a general autonomous system and its external world. This helps inform what areas will be the focus of assessing test adequacy. We have existing ranges and T&E capabilities that can be adapted for the external interactions on the right and making these adaptions will be very important to the testing on the left. The internal autonomous system functions on the left will need to be tested primarily in M&S due to the orders of magnitude higher number of possible situations autonomous systems are capable of negotiating compared to automated systems (the intrinsic value of autonomy!). A strategy for testing the control component (the box) of autonomous systems is important to informing what the autonomy T&E infrastructure needs to be..

10Unclassified

AAIT Tester Timeline

• Test Planning – long lead time, SUT design and/or program not
necessarily set

• Range Prep – SUT and/or SUT models identified, short lead time
• Test Control – SUT present, focus on safety of range/personnel/SUT
• Test Execution – SUT present, focus on efficient test, proper stimulus,

data collection
• Performance Assessment – SUT and/or test environment no longer

available, focus on data, feedback to next test cycles

Test Execution

Test Control
Performance AssessmentTest Planning Range

Prep

Different perspectives/technologies needed across the test cycle

Test cycle/ time

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
We simply drew lines to create the domains, shown here.

Breaks in the tester timeline are used to bound the edges of the UAST domains

11Unclassified

UAST Domain Partitions

• Tester Timeline perspective drives UAST domain
partitions
– Autonomous System Test Planning
– Autonomous System Test Execution and Control
– Autonomous System Performance Assessment

Test Execution

Test Control
Performance AssessmentTest Planning Range

Prep

Autonomous System Test
Execution and Control

Autonomous System
Performance Assessment

Autonomous System
Test Planning

Test Innovations Needed to Identify Limitations, Compress the
Timeline and Expedite Soldier Acquisition

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
We simply drew lines to create the domains, shown here.

Breaks in the tester timeline are used to bound the edges of the UAST domains

12Unclassified

UAST Roadmap

•Roadmap driven by use-case assessment from tri-
service working group

Use Cases

Autonomous EraAutomated Era Intelligent Era

Transit and Refuel Transport and Drop Electronic Attack

Kinetic AttackUrgent LogisticsUrgent Logistics/ Casualty Evac

Logistics Transport Tactical Urban SupportPallet Loader

Logistics Soldier OffloadLand Route Protection Battle space awareness ISR

USV Port/Maritime Force ProtectionUUV Coastal ISR

UUV Large Area Sweep USV ASWUUV Payload/Sensor DeployUSV Large Area Sweep

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes

Blocks do not rigidly align to years (more relational than time spaced)
Blocks from use cases to domains do not line up either
More to give idea of how complexity builds up over time

13Unclassified

UAST Roadmap

•Produce needs and gaps partitioned into UAST domains

Test Planning Needs

Use Cases

Autonomous EraAutomated Era Intelligent Era

Performance Assessment Needs

Test Execution/Oversight Needs

Measure human machine
interaction effectiveness

Measure distributed situational awareness
and decision making

Assess maturity of learning
systems

Ability to identify and predict aberrant
behavior from observation

Assess rule adherence and mission
coverage

Develop immersive environment
for complex terrain

Correlate separate but networked
awareness and decision

Design tests for exercising and
software resiliency

Adapt test environment to multiple
smart agents

Identify failure boundaries for
test selection

Identify most salient tests based
on SUT parameters

Provide embedded prediction for
collision safety

Exploit white box methods for fault
analysis

Design tests for distributed teams and
swarms interaction

Exploit white box methods for
decision assessment

Develop immersion for close
maneuvering and formation

Integrate smart actors in
immersive environment

Develop test for evoking
emergence

Design tests for MUM team
coordination

Measure adaptivety
and emergence

Tools to preload
experience

Develop tests to exercise rule
coverage

Develop dynamic virtual geo-
fences

Integrate dynamic LVC stimulus
in open air ranges

Synchronize distributed
adversarial response

Develop measures for
negative requirements

Detect and trace faults and fault
propagation

Transit and Refuel Transport and Drop Electronic Attack

Kinetic AttackUrgent LogisticsUrgent Logistics/ Casualty Evac

Logistics Transport Tactical Urban SupportPallet Loader

Logistics Soldier OffloadLand Route Protection Battle space awareness ISR

USV Port/Maritime Force ProtectionUUV Coastal ISR

UUV Large Area Sweep USV ASWUUV Payload/Sensor DeployUSV Large Area Sweep

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Blocks from use cases to domains do not line up either
More to give idea of how complexity builds up over time

14Unclassified

STAA DIPT

RAPT

UAST Roadmap

• Investment

Measure human machine
interaction effectiveness

Measure distributed situational awareness
and decision making

Assess maturity of learning
systems

Ability to identify and predict aberrant
behavior from observation

Assess rule adherence and mission
coverage

Develop immersive environment
for complex terrain

Correlate separate but networked
awareness and decision

Design tests for exercising and
software resiliency

DDT RIOT

UAST Investment

Adapt test environment to multiple
smart agents

Identify failure boundaries for
test selection

Identify most salient tests based
on SUT parameters

Provide embedded prediction for
collision safety

Exploit white box methods for fault
analysis

Design tests for distributed teams and
swarms interaction

Exploit white box methods for
decision assessment

Develop immersion for close
maneuvering and formation

Integrate smart actors in
immersive environment

Develop test for evoking
emergence

Design tests for MUM team
coordination

Measure adaptivety
and emergence

Tools to preload
experience

Develop tests to exercise rule
coverage

Use Cases

Performance Assessment Needs

Test Execution/Oversight Needs

Test Planning Needs

Autonomous EraAutomated Era Intelligent Era

TACE Future ProjectATAS

Transit and Refuel Transport and Drop Electronic Attack

Kinetic AttackUrgent LogisticsUrgent Logistics/ Casualty Evac

Logistics Transport Tactical Urban SupportPallet Loader

Logistics Soldier OffloadLand Route Protection Battle space awareness ISR

USV Port/Maritime Force ProtectionUUV Coastal ISR

UUV Large Area Sweep USV ASWUUV Payload/Sensor DeployUSV Large Area Sweep

Develop dynamic virtual geo-
fences

Integrate dynamic LVC stimulus
in open air ranges

Synchronize distributed
adversarial response

Develop measures for
negative requirements

Detect and trace faults and fault
propagation

Future Project

NAVAIR Public Release- 2018-358 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Using the Use Cases and Test Needs the DOD has identified, we invest in projects to provide solutions. I will discuss 3 of our current projects and how they are going to be used to verify autonomy.

15Unclassified

Range Adversarial Planning Tool (RAPT)

• Autonomy Test Question:
– How does a tester identify the most

relevant tests for OAR?
– How does a tester ensure Autonomous

System has been fully “exercised” and
emergent behavior identified?

• Proposal:
– Develop software to generate mission

simulations using adaptive sampling
techniques to:
 Identify critically-ranked, performance-

stressing scenarios
 Identify pass/fail boundaries

XX

X

XX X

X

X

X

X
X X

X

Success

Failure

NAVAIR Public Release- 2018-733 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Testing an autonomous system is not intuitive. A test that is difficult for a human may be easy for an autonomy. It is necessary to determine what are the “difficult” tests for the autonomy and conduct those tests on the full system. Specifically, the Navy had a problem identifying what missions/tests are difficult for a UUV. The UUV program office wanted to identify the performance boundary between UUV failure and successful return of the vehicle so they do not conduct a test that is “easy” for the autonomy or a test that would cause the UUV to be lost.

Our first project, the Range Adversarial Planning Tool, is designed to help solve this problem. This software uses adaptive sampling to run hundreds of thousands of mission simulations to identify the performance boundaries of an autonomous system during a mission.

16Unclassified

Range Adversarial Planning Tool (RAPT)

• Autonomy Test Question:
– How does a tester identify the most

relevant tests for OAR?
– How does a tester ensure Autonomous

System has been fully “exercised” and
emergent behavior identified?

• Proposal:
– Develop software to generate mission

simulations using adaptive sampling
techniques to:
 Identify critically-ranked, performance-

stressing scenarios
 Identify pass/fail boundaries

Critical transitions between performance
modes are inherently discontinuous

NAVAIR Public Release- 2018-733 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
RAPT will vary all of the environmental variables, obstacles, and mission inputs for an autonomous vehicle simulation. It will then identify where small changes in test inputs have caused a change in system performance.

17Unclassified

RAPT Scenario Comparison

Launch

Goal

Recovery

Determine where small changes in
the environment can cause drastic

changes in behavior

NAVAIR Public Release- 2018-733 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
The output of RAPT is shown here. The software identified 2 scenarios where a small change in the environment caused a drastic change in system performance.

In this scenario, a UUV must navigate around obstacles, reach a goal, and then return to a recovery point. The UUV successfully completes this mission. RAPT varies the scenario by moving the first obstacle slightly. During this mission, the UUV cannot navigate around the obstacle and fails the test. RAPT identifies this discontinuity to the test engineer so they can diagnose the problem and determine why the autonomy did not perform as expected.

18Unclassified

Goal: With a limited number of available simulation runs, create a set that
provides the maximum amount of information about the boundaries

RAPT: Adaptive Sampling

Plates2D Test Function

Performance
Boundaries

NAVAIR Public Release- 2018-733 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Autonomous systems have a large number of system inputs (sensor data, etc…) and operate in a complex environment. It is not possible to conduct real world tests of every possible test case when a test could have 20 or more inputs. RAPT optimizes the search space to find and search along the pass/fail boundary of a test.

19Unclassified

RAPT Architecture

Test
Engineer

Test
Director

NAVAIR Public Release- 2018-733 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Here is an overview of the RAPT architecture. The RAPT architecture is autonomy agnostic. RAPT generates mission scenarios and feeds the initial conditions to the Autonomy Under Test simulation. RAPT uses High Performance Computing to conduct hundreds of thousands of runs and identify the relevant scenarios to the test engineer.

20Unclassified

Robustness Inside-Out Testing (RIOT)

• Autonomy Test Question:
– How does a tester identify unit level

“bugs” that trigger unsafe behavior?
– Full system level “Fuzz” testing may not

identify Unit Level bugs in an autonomy
• Proposal:

– Develop tool to find “bugs” in autonomy
software that cause safety violations
 Conduct Unit Level testing and back-chain unit

bugs to system level inputs
 Find system level bugs faster and cheaper
 Find bugs that system level testing cannot
 Identify bugs that cause typical software

failures (Ex. Segmentation Faults) as well as
safety failures (Ex. Max Speed Violation)

Conduct Unit Level testing to identify bug and
back-chain results to find system level inputs

Bug activation via
ASTAA unit-testing

Generalized
activation rules

Non-
permeable at
intermediate
interface

Permeable at
intermediate

interface

Non-permeable at
system interface

Permeable at
system interface

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Another test question that DOD programs have struggled with is how does a tester/developer identify unit level “bugs” that trigger unsafe behavior. Bugs exist in an autonomous system that allow the system to work but may allow the system to exhibit an unsafe behavior. It is very difficult to identify these bugs with typical code V&V (ex. Code review, min/max unit testing). In addition, full system level “Fuzz” testing may not identify Unit Level bugs in an autonomy.

Our second project, Robustness Inside-Out Testing (RIOT), is developing a software tool to find bugs in the Autonomy Under Test that cause safety violations. They do this by conducting unit-level testing and back chain the unit-bugs to system level inputs. The “Swiss Cheese” model can be used to illustrate the basic concept of tracing bugs through a system.

21Unclassified

RIOT Process

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Here is an overview of the RIOT process. If the system here is a ROS based autonomy, RIOT will conduct testing on a ROS node to determine a unit level violation. The software will then determine if it is possible for a previous node to generate an output that would cause the unit level bug. The goal of the software is to continue to trace this bug through each software node to determine if it can be activated by a system level input.

This process is more efficient that full system level fuzz testing. Also, RIOT identifies the bug at a unit level, which saves developers time and effort to locate the problem code compared to a typical system level fuzz test.

22Unclassified

RIOT Challenges

• Typical Swiss cheese model fails
because values do not simply pass
through holes (i.e. interfaces)

– Values are transformed as they are
processed by intermediate layers
 Example: Motion planner receives goal.x = 5

and publishes cmd_vel.rpm = 3.068
– Transfer functions are unknown with many-

to-many mapping
– Transformations are temporal and non-

deterministic, even with identical experiments
and inputs

• RIOT utilizes techniques for noisy costly black-
boxes and implements them at the unit level

 Black box testing is noisy and costly when
testing a complex autonomous system

 Identify bugs that cause typical software
failures (Ex. Segmentation Faults) as well as
safety failures (Ex. Max Speed Violation)

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Even though, I just used the Swiss Cheese model to describe the process of testing an autonomous system from the unit level to the system level, the model fails because values do not simply pass through the holes. Values are transformed by each layer. We assume that the industry developer will not provide the transformation function for each layer to the government.

RIOT uses techniques for noisy, black-box fuzz software testing at the unit level. It will identify bugs that cause typical failures (i.e. seg faults) as well as safety failures (ex. Max speed violations) at the unit level. For example, given a ROS based autonomy, it will “fuzz test” a ROS node to identify seg faults or predefined rule violations.

This software was tested on a real world ground system that had a “hard coded” max speed. RIOT was used to determine if an input could be provided to the system that would cause the ground vehicle to exceed the max speed of 20 mph. When RIOT analyzed the throttle control node, it found a combinations of inputs that allowed the vehicle to exceed the speed limit.

23Unclassified

RIOT Generalization

• Expand the target area
– Take a set of specific test values and infer

the circumstances (e.g. range of values)
under which the bug would be activated

• Strategies for Generalization:
– Delta Debugging

 Reduce the message log to improve efficiency
of generalization

– Decision Trees
 Given large test field, find the “best” fields to

split the reults
– Omni-Trees

 Evolution of decision trees to improve results
 Ability to split on one or more field

– Hierarchical Product Set Learning (HPSL)
 Active learning strategy to infer values that

caused an error based on initial error
– Relationship Object Approximator for

Domains
 Augments HPSL by capturing and

representing correlations between fields that
cause an error

Failure Case
0: m6.x=-4

Failure Case
0: m6.x=-99

Failure Case
0: m6.x=-1

Failure Case
0: m6.x=-7

Failure Case
0: m6.x=-12

Failure Case
0: m6.x=-412

Failure Case
0: m6.x=-1781

Failure Case
0: m6.x=-21

Activa tion
Rule
m6.x < 0

Decision Tree Example

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
It is easy to identify a specific case that causes a software bug. The RIOT software also tries to correlate and group similar bugs so that a test engineer can easily identify the root cause.

If we go back to the ground robot example, RIOT identified a bug when variable x=-21. A bug also occurred when x=-10 or x=-8. RIOT uses the techniques described here to generalize those failure cases and determine an activation rule. In this case, the activation rule, is that the throttle controller commands a vehicle speed greater than 20mph when the input variable x is less than zero.

24Unclassified

RIOT Back-Chaining

• Determine messages that cause
activation of the bug

• Strategies for Back-Chaining:
– Automate testing & exploration of message fields

because search space is too large for a tester
– Utilize multiple classification techniques to detect if

an input message effects and output message
 Time-series classification using a distance based

classifier
 Time-series classification using a feature based

classifier
– Do not need to determine the exact “transfer

function”. We just need to determine if a previous
message causes changes to the faulty message

Unit-Level Activation Rule

Node
D

Node
C

Node
A

Msg 6Msg 4Msg 1

Intermediate Activation Rule

System-Level Activation
Rule

Inward Activation
Path

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Now the RIOT software determines if it is possible for one of the previous ROS nodes to generate an output that matches the bug activation criteria.

It is important to note that RIOT does not need to model or determine the exact “transfer function” within each node. All RIOT needs to determine is if a previous message causes changes in the faulty message.

Using our ground robot example. RIOT traced the bug out to a combination of system level inputs. RIOT determined that when the system is given a system input speed command greater than 20 mph in reverse, the robot will exceed the max speed limit. Since RIOT works at the unit level, it was shown that the bug occurs in the throttle controller node, and it was easier for the developers to find the issue. The developers realized that they forgot to include an absolute value sign around the speed calculation.

25Unclassified

RIOT Process

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
To summarize, RIOT performs

26Unclassified

Robustness Testing for Perception
Systems

• Autonomy Test Question:
– How does a tester determine the

reliability of a perception system?
• Proposal:

– Develop software to determine
the “Robustness” of a Neural
Network Perception System
 Difficult to define “correct: for arbitrary

images in perception systems
 Instead, measure if the output is stable

with the addition of noise
– There are many stressful conditions

that lead to noise
 Environmental conditions (e.g. haze or

fog)
 Hardware effects (e.g. motion blur,

focus)
 Difficult scenes (eg. Occlusion of

objects)

Behavior of an “ideally” robust system should
be invariant to the addition of noise

Haze

Lens
Flare

Rain Photoshop

Our Code

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
The final project I will discuss helps the DOD determine the reliability of a perception system. DOD program offices write system performance requirements in terms of environmental performance specifications.

i.e. The ground vehicle must not hit a human.
The vehicle must operate with a minimum visibility of 1 km.

Program offices then have to test there autonomous system and perception system against this requirements. This software is designed to determine the robustness of a Neural Network perception system.

27Unclassified

Robustness Testing for Perception
Systems

• Testing the robustness of a perception
system means checking that it’s behavior
is invariant under noise

– An input image is evaluated both with and
without noise, and the results are compared

– The results should be roughly equivalent for a
perception system to be considered “robust”
 NREC Agricultural Detection Benchmark was

used
 Used classifiers trained on data set as SUT

• Example to the right, perception system
fails to detect pedestrian with addition of
blurring noise

– The ground-truth labeling is blue
– Result of perception without noise is orange
– Result of perception with noise is (not) shown

in red

Input
Image(s)

Perception
System

Perception result
w/o noise

Perception result
w/ noise

≟
Noise
Model

In this case , Gauss ian blur noise made the pedes trian disappear
(i.e ., the red bounding box is miss ing).

Noisy
Image

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
The software works by evaluating an input image with and without noise. The results are then compared to determine the performance boundary/robustness of the perception system.

An example of this is shown here. We used a database of images generated when a tractor was equipped with stereo cameras and driven through orange fields with human obstacles to generate a five hundred thousand labeled image data set. It is possible to train a neural network to detect humans using the stereo cameras. Images in the data set were altered to add noise. In this case, Gaussian Blur noise (i.e. Haze) was added to the images. You can see that a miniscule amount of “haze” made the pedestrian undetectable.

28Unclassified

Haze Mutator

• We follow vision dehazing literature by
using a simple alpha-blending
approach w/ few parameters:

– Color of haze, 𝑐𝑐
– Density of haze, 𝑏𝑏
– Equation for each pixel

 Visibility depends on depth at pixel, z(x)
a = 𝑒𝑒−bz 𝑥𝑥

 Hazed image is alpha blend w/ haze color
H 𝑥𝑥 = I 𝑥𝑥 a + c(1 − a)

• Our dataset has stereo images, so we
can compute scene flow and filter to
get smooth, dense estimates of depth
(and motion) throughout scene

Input Image Estimated Disparities

Different levels of haze with simulated visibility
distance, where 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 3.912

𝑏𝑏

1 km visibility

100 m visibility

30 m visibility

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Here is a description of how Haze was created and added to each image. The important take-away are the images on the right. You can see what the vehicle perceives in a situation of 1km visibility, 100m visibility, and 30m of visibility.

29Unclassified

Perception System Performance with Haze

Shapes show how
performance changes if you
keep sensitivity fixed as you
add haze. Sensitivity
threshold with false positives
per image in baseline
conditions of…

1 per 10 images
1 per 100 images
1 per 1000 images



Baseline
assumes infinite
visibility.

Note that both
miss rate and
false positive rate
change as haze
is introduced.

As a result, miss
rate increases
more than you
might expect
from just looking
at the ROC
curves.

Triangles show
baseline system with
sensitivity chosen that
produces one false
detection every 10
images and how it
performs under
different levels of
haze.

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
To summarize, you can understand the performance of a neural network by looking at the Miss Rate and False Positives per Image. The red line is the baseline performance with infinite visibility. The blue line is with ~400m visibility, and the teal line is with ~30m visibility.

The Triangles show the baseline system with sensitivity chosen to produce 1 false detection every 10 images. If you find that same sensitivity setting in the other curves, you can see that both miss rate and false positive rate change.

30Unclassified

Haze Visibility of ~400 m

Some strong detections become extremely weak with barely
perceptible image changes.

Detection Strength False Positive RateGround Truth Label Detection

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

Presenter
Presentation Notes
Here are some examples of strong detections with infinite visibility that become weak detections with minimal image changes. You can see that the baseline images have a false positive rate of 0 and the perturbed images have jumped to 422. As we all know, Neural Network perception systems are only as good as their training data. However, you will never have enough labeled training data to ensure the perception system performs well in all cases. In addition, performance specifications are made in terms of environmental variables that don’t correspond to training data sets. This tool will allow testers and developers to identify the performance boundaries of a perception system and ensure the system meets the safety case.

31Unclassified

Questions

???

NAVAIR Public Release- 2018-715 'Approved for Public Release; distribution is unlimited'.

	Test & Evaluation/Science & Technology Program�NATO S&T Meeting
	Mission
	Unmanned and Autonomous Systems Test Operational Scenarios
	Autonomy Priorities
	Autonomy Testing Challenges
	Eras and Testing Challenges
	Autonomous Systems Overview
	Autonomous Systems Overview
	Autonomous Systems Overview
	AAIT Tester Timeline
	UAST Domain Partitions
	UAST Roadmap
	UAST Roadmap
	UAST Roadmap
	Range Adversarial Planning Tool (RAPT)
	Range Adversarial Planning Tool (RAPT)
	RAPT Scenario Comparison
	RAPT: Adaptive Sampling
	RAPT Architecture
	Robustness Inside-Out Testing (RIOT)
	RIOT Process
	RIOT Challenges
	RIOT Generalization
	RIOT Back-Chaining
	RIOT Process
	Robustness Testing for Perception Systems
	Robustness Testing for Perception Systems
	Haze Mutator
	Perception System Performance with Haze
	Haze Visibility of ~400 m
	Questions

